ENVIRONMENTAL RESEARCH COMMUNICATIONS

ACCEPTED MANUSCRIPT • OPEN ACCESS

Monitoring Spatiotemporal Changes in Land Use/Land Cover and its Impacts on Ecosystem Services in Southern Zambia

To cite this article before publication: Diling Liang et al 2024 Environ. Res. Commun. in press https://doi.org/10.1088/2515-7620/ad37f3

Manuscript version: Accepted Manuscript

Accepted Manuscript is "the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an 'Accepted Manuscript' watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors"

This Accepted Manuscript is © 2024 The Author(s). Published by IOP Publishing Ltd.

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 4.0 licence, this Accepted Manuscript is available for reuse under a CC BY 4.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence <u>https://creativecommons.org/licences/by/4.0</u>

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.

Monitoring Spatiotemporal Changes in Land Use/Land Cover and its Impacts on Ecosystem Services in Southern Zambia

Diling Liang ^{a*}; James Reed ^b; Sima Fakheran ^{a c}; Kaala Moombe ^b; Freddie Siangulube ^b;
 Terry Sunderland ^{a b}

6 a Faculty of Forestry, University of British Columbia, Vancouver, Canada

7 b Center for International Forestry Research, Bogor, Indonesia

8 c Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran

9 *Corresponding author, Email: <u>dilingliang@hotmail.com</u>

11 Abstract

Ecosystems play a vital role in human well-being, yet the widespread loss of ecosystem services due to human activities, including agricultural expansion and deforestation, remains a significant concern. Despite the wealth of research highlighting the importance of ecosystem conservation in Zambia, a critical gap exists in understanding the interplay between the conservation of ecosystem services and the socio-economic needs of local communities. This study presents a comparative analysis of ecosystem services in two distinct landscapes within southern Zambia: the protected area of Kafue National Park (KNP) and the agricultural landscape of Kalomo district between 2000-2020. Employing a combination of quantitative and qualitative methods, we evaluate the impacts of land/use and land cover (LULC) changes on selected ecosystem services, with a particular focus on carbon storage and the habitat quality of the trumpeter hornbill. The results of the comparison indicate that: (1) the Kalomo district has suffered from extensive land conversion, with forest changing to cropland, while KNP was well protected from encroachment, with forest area increasing over time; (2) carbon stocks and the habitat quality of trumpeter hornbills continually decreased in the Kalomo district but improved in KNP; (3) Kalomo district has suffered rapid environmental degradation due to an imbalance between economic development and environmental conservation, while strict enforcement in KNP has preserved ecosystems. The findings underscore the importance of integrated and inclusive land-use planning and natural resource governance for maintaining and enhancing ecosystem services in Zambia. To progress towards landscape management that is both

1 ว		
2 3	24	materially and emitable aligning with the chievings of the Clobal Diadiversity Francescul, it
4	31	sustainable and equitable, aligning with the objectives of the Global Biodiversity Framework, it
5	32	is proposed that a comprehensive approach be adopted in the region. This approach should
6 7	33	encompass a more thorough consideration of local livelihood requirements, as well as the wider
8 9 10	34	political-economic and social factors at play.
10 11 12	35	
13	36	Keywords: Ecosystem services, InVEST model, LULC change, protected area, deforestation,
14 15	37	Zambia, Convention on Biological Diversity, Global Biodiversity Framework
16	38	
17 18 19	39	
20	40	
21	41	
22 23	41	
23 24	42	
25		
26	43	
27		
28	44	
29	45	
30	45	
31 32	46	
33	40	
34	47	
35		
36	48	
37		
38	49	
39 40	F.0	
40 41	50	
42	51	
43	-	
44	52	
45		
46	53	
47	Γ /	
48 49	54	
5 0	55	
51	55	
52	56	
53		
54	57	
55 56	58	
56 57	20	
57		2
59		
60		

2 3	59	Declarations
4 5	60	Ethical Approval
6 7 8 9 10	61 62 63	This study did not involve human or animal subjects. However, ethical principles were considered throughout the study, and all research procedures were conducted in compliance with ethical standards for scientific research.
11 12	64	Competing interests
13 14 15	65 66	We confirm that we have no conflicts of interest associated with this publication. We confirm that the manuscript has been read and approved for submission by all the named authors.
16 17	67	Authors' contributions
18 19	68	All authors have contributed significantly to the study, as detailed below:
20 21 22	69 70	Diling Liang: Conceptualization, study design, data collection, data analysis and interpretation, manuscript writing.
23 24 25	71 72	James Reed: Conceptualization, study design, data analysis and interpretation, visualization, review and editing.
26 27	73	Sima Fakheran: Conceptualization, data analysis and interpretation, review and editing.
28 29	74	Kaala Moombe: Conceptualization, data analysis and interpretation, review and editing.
30 31	75	Freddie Siangulube: Conceptualization, data analysis and interpretation, review and editing.
32 33 34	76 77	Terry Sunderland: Conceptualization, study design, data analysis and interpretation, visualization, review and editing.
35 36	78	
37 38	79	Funding
39 40	80	This study was funded by the Center for International Forestry Research(CIFOR)
41 42	81	Availability of data and materials
43	82	All data generated or analyzed during this study are included in this published article and its
44 45	83	supplementary information files. Additionally, the datasets used in this study are available from
46	84	the corresponding author upon reasonable request.
47	85	
48 49		
50		
51		
52		
53 54		
54 55		
56		
57		
58		3
59 60		
00		

1. Introduction

K Ecosystem services (ES) are the benefits humans directly or indirectly obtain from nature, categorized into four functional groups: provisioning, regulating, cultural, and supporting services (Millennium Ecosystem Assessment 2005, Lanzas et al 2019, Liu et al 2010, Neugarten et al 2018). Human survival and quality of human life ultimately depend on this range of ecosystem services (Summers et al 2018). For instance, the availability of food, fresh water, and shelter from ecosystems are the basic materials for human life. However, human activities have drastically altered landscapes and ecosystems (Berihun et al 2021), and approximately 60% of ES are being degraded due to anthropogenic drivers such as land-use and climate change (Millennium Ecosystem Assessment, 2005, Lanzas et al 2019).

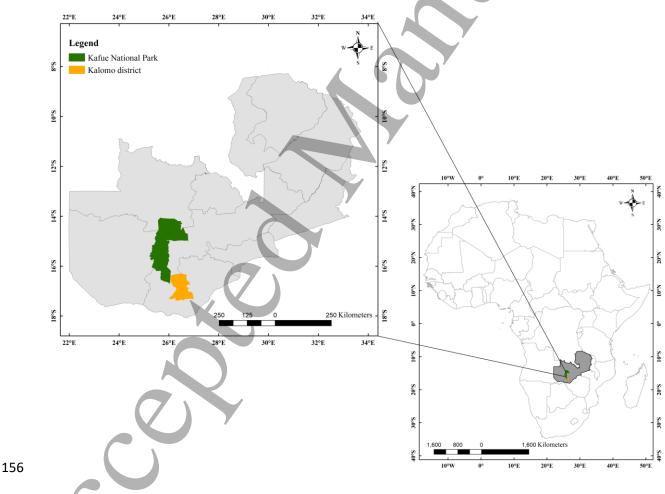
Land-use change is the primary direct driver of ecosystem degradation, thereby critically affecting their ability to maintain the provision of goods and services to humanity (Li et al 2015, Rai et al 2018). Pressures resulting from increasing population, consumption, inequality, urbanization, and globalization have led to increased demand for land, food, water, and other natural resources. Such pressures have resulted in agricultural expansion, deforestation, land degradation, and biodiversity loss, impacting human well-being by significantly altering the provision of ecosystem services (Elmhagen et al 2015, Henderson and Loreau 2018, Reader et al 2022). Zambia's land-cover has undergone a series of complex changes during the past three decades, largely due to social, political, and economic influences (Phiri et al 2019), and these changes have negatively impacted the provision of many ES. The ES framework is a comprehensive approach employed for the management of ecosystems, with a notable impact on the process of decision-making (Evers et al. 2018). Consequently, there is an increasing prevalence of policymakers seeking environmental sustainability assessments in relation to development. However, the predominant focus of research on ecosystem services (ES) in Zambia is around the use of case studies that examine a solitary landscape to evaluate and delineate ES, commonly centred on provisioning services (Deuteronomy et al 2019, Van der Horst et al 2014, Lehner et al 2021).

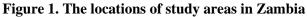
In contrast to provisioning services, regulating services, cultural services, and supporting services are particularly underestimated in Zambia. Furthermore, few studies have taken into account the simultaneous consideration of conservation objectives and the social-economic

1	
2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
17	
12	
13	
14	
15	
16	
17	
10	
10	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
20	
21	
22	
23	
23	
24	
25	
26	
27	
28	
20	
30	
31	
32	
33	
34	
35	
26	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

demands of local communities. Notably, Zambia has just committed to the Kunming-Montreal
Global Biodiversity Framework, which outlines a comprehensive set of measures designed to
"enhance biodiversity and ecosystem functions and services, ecological integrity and
connectivity," while also emphasizing the "recognition and respect the rights of indigenous
peoples and local communities." This commitment exemplifies an increasing acknowledgement
of the significance of supportive services in advancing sustainable development and
safeguarding the welfare of indigenous populations.

In Zambia, a substantial portion of the land, approximately 40%, is designated as 123 protected areas (PAs), comprising 20 national parks and 36 Game Management Areas (GMAs), 124 all established with the primary aim of conserving biodiversity (Lindsey et al 2014, Hou-Jones et 125 al 2019, Lecina-Diaz et al 2019). Zambian national parks are regarded as strict PAs where 126 127 human settlement is strictly prohibited and agricultural activities are forbidden (Lindsey et al 2014). Conversely, to promote socio-economic development, agriculture has been extensively 128 developed in Zambia. The country faces considerable deforestation rates, driven largely by 129 agricultural expansion (Richardson et al 2021), resulting in an annual deforestation rate of 130 250,000 to 300,000 hectares per year (Phiri et al 2022). Consequently, it becomes imperative to 131 comprehend the diverse impacts of various land management policies on LULC, ES, and local 132 communities, and to propose integrated approaches to natural resource management at the 133 landscape scale that effectively harmonize both conservation objectives and the needs of local 134 135 communities in Zambia.


To understand the influence of land management policies on ES, this study conducted an 136 assessment and comparative analysis of the long-term (2000-2020) land-use dynamics on 137 regulating services (carbon storage) and supporting services (habitat quality), in Kafue National Park 138 and Kalomo district in Zambia. Kafue National Park represents a stringent PA, while Kalomo district 139 140 epitomizes a well-established agricultural region within the Zambian landscape. The objectives of this study encompass the following: (1) evaluation of LULC changes within both landscapes, each 141 subject to distinct land management policies; (2) quantification and spatial mapping of carbon 142 143 storage and habitat quality for the Trumpeter hornbill employing ecological models; (3) comparative analysis of the land management policies that propel land-use alterations in the two contrasting 144 145 landscapes; (4) formulation of recommendations for divergent landscape management strategies. 146 Through the pursuit of this research endeavour, our overarching objective is to enhance our


147 comprehension of how to effectively harmonize the livelihood requirements of local148 communities with the imperative task of conserving ES.

149 2. Methodology

2.1 Study sites

 The study areas are Kafue National Park and Kalomo District (Figure 1). Both landscapes are characterized by Miombo and Mopane woodlands. The Miombo woodlands of southern Africa are one of the most significant dry forests in Africa (Rduch 2016, Phiri et al 2019) and are significant sources of livelihood benefits and have critical functions in conserving biodiversity and mitigating climate change (Chanda 2007, Moombe et al 2020).

Page 7 of 37

2		
3 4	158	The KNP is located in the central area of southwestern Zambia. It is the oldest and largest
5 6	159	national park in Zambia, covering an area of 22,480 km ² (Gula and Phiri <u>2020</u>). Nine Game
7	160	Management Areas (GMAs) border the KNP, and it is estimated that more than 174,796 people
8 9 10 11	161	live in the proximity of the KNP (Namukonde and Kachali 2015). While KNP is a national asset
	162	that brings rewards at the national level and is important for the conservation of unique
12	163	biodiversity, its stringent restrictions on access to natural resources have profound socio-
13 14	164	economic repercussions on the surrounding communities (Vezina et al 2020). These
15 16	165	communities heavily rely on natural resources for their livelihoods, yet they are largely excluded
17	166	from the park to the extent that most people consider visiting the park to be illegal (Watson et al
18 19	167	2014, Namukonde and Kachali 2015, Milupi et al 2021).
20 21	168	Kalomo district is located in the Southern province, covering 8,075 km ² (Moombe et al
22 23 24		
	169	2020). Kalomo is a typical agricultural landscape in Zambia. It is referred to as the "Farmers'
25	170	Nest" because of the commercial, small to medium-scale livestock and crop (specifically maize)
26 27	171	farming enterprises (Bush 2014, Moombe et al 2020). However, Kalomo district also ranks as
28 29	172	one of the economically poorest in the country (Sialubanje et al 2017). Agriculture is
30	173	predominantly rain-fed and the primary economic resource for local people, accounting for
31 32	174	34.4% of local household income (Moombe et al 2020). Maize is the primary staple crop in
33 34	175	Kalomo and occupies 55% of the cultivated area. Indigenous and hybrid maize varieties account
35 36	176	for 25% and 30% of the cultivated crops, respectively (Kalinda et al 2010). In addition to crop
37	177	production activities, households keep livestock and cattle are the most important livestock
38 39	178	species owned by local farmers for various purposes (Kalinda et al 2010). Moombe et al (2020)
40 41	179	stated that in the Kalomo district as of 2020, the human population is 395,471 and the total
42	180	number of livestock is 411,765.
43 44		

2.2 Ecosystem Services Assessment

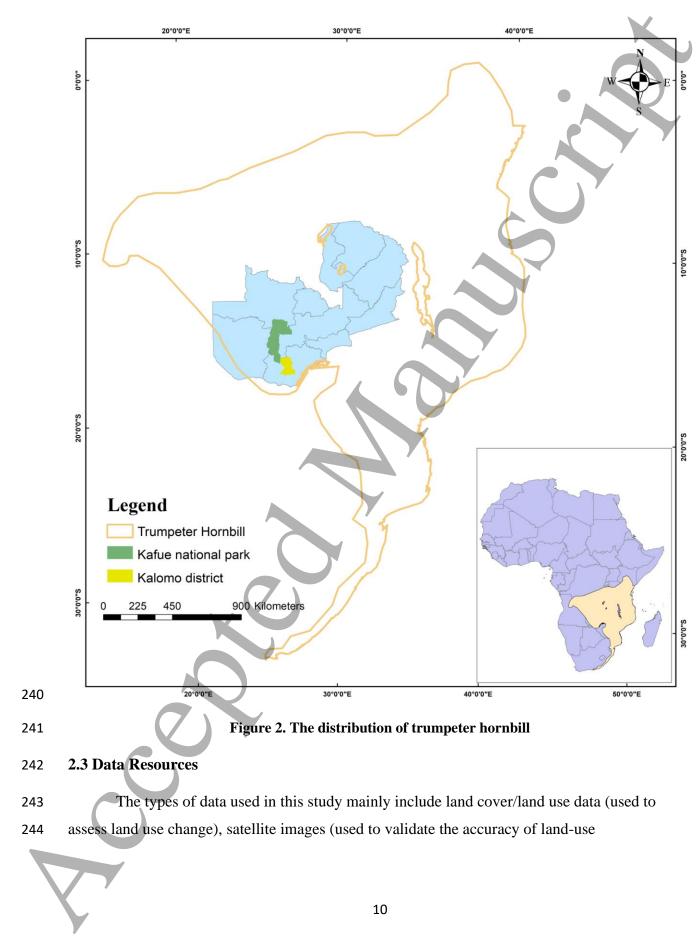
The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model is a geospatial model to quantify and map ecosystem services (Keller et al 2015). It operates on a gridded map with an average annual time step, making it suitable for evaluating the effects of land-use change on various ES (Tallis et al 2014). The InVEST model includes different modules, and carbon storage and habitat quality modules are used to estimate the status and variation in carbon stock and habitat quality provided by the different LULC types (Maanan et al

<u>2019</u>, Nematollahi et al. <u>2020</u>). It is extensively utilized for quantifying ES due to its ability to
customize input data and settings, as well as its requirement for limited data for researched ES
(Grafius et al 2016, Daily et al 2009, Ochoa and Urbina-Cardona 2017).

191 2.2.1 Carbon storage

Carbon sequestration is one of the key supporting services (Sintayehu 2018). Preserving carbon stocks is an important objective of the United Nations Framework Convention on Climate Change (Soto-Navarro et al 2020). The practical assessment of carbon stock could guide how carbon targets can be incorporated into national policies and implemented in climate change mitigation and adaptation (Soto-Navarro et al 2020). The carbon storage module of InVEST can estimate the spatial distribution of carbon stock across the study areas based on the simple carbon cycle (Maanan et al 2019, Piyathilake et al 2022). The total carbon storage of the landscape is the sum of four different carbon pools assigned for each LULC type: (i) aboveground biomass, which includes all living plant materials; (ii) belowground biomass, which comprises the living roots systems; (iii) soil organic matter; and (iv) dead organic material (Sialubanje et al 2017, Dietz 2021, Duarte et al 2016, Piyathilake et al 2021).

2.2.2 Habitat quality

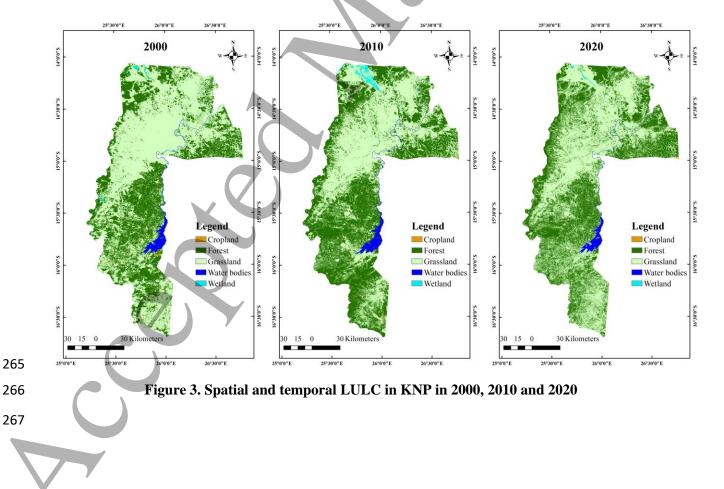

Birds serve as valuable tools for biodiversity monitoring in forest ecosystems due to their sensitivity to environmental changes and their ease of identification (Copper et al 2020). This unique combination of attributes makes monitoring programs not only feasible but also accessible to both scientists and the general public (Copper et al 2020, Wade et al 2013). In our study, we have chosen the Trumpeter hornbill (Bycanistes buccinator) as the focal species due to its distribution encompassing both the KNP and the Kalomo district (Figure 2). Unlike the Ground-Hornbill (Bucorvus leadbeateri), with limited habitat preference in KNP and listed as Vulnerable (Gula and Phiri 2020), the Trumpeter hornbill has been a Least Concern species on the IUCN Red List since 1984 (BirdLife International 2018). However, trumpeter hornbills are considered large, frugivorous birds, facilitating the functional connectivity of fragmented landscapes. This is attributed to their remarkable ability to disperse seeds over considerable distances and among suitable habitat patches (Mueller et al 2014, Lenz et al 2015). Such actions support gene flow, range expansion, and natural forest regeneration, all of which are crucial for biodiversity conservation (Mueller et al 2014, Lenz et al 2015).

Page 9 of 37

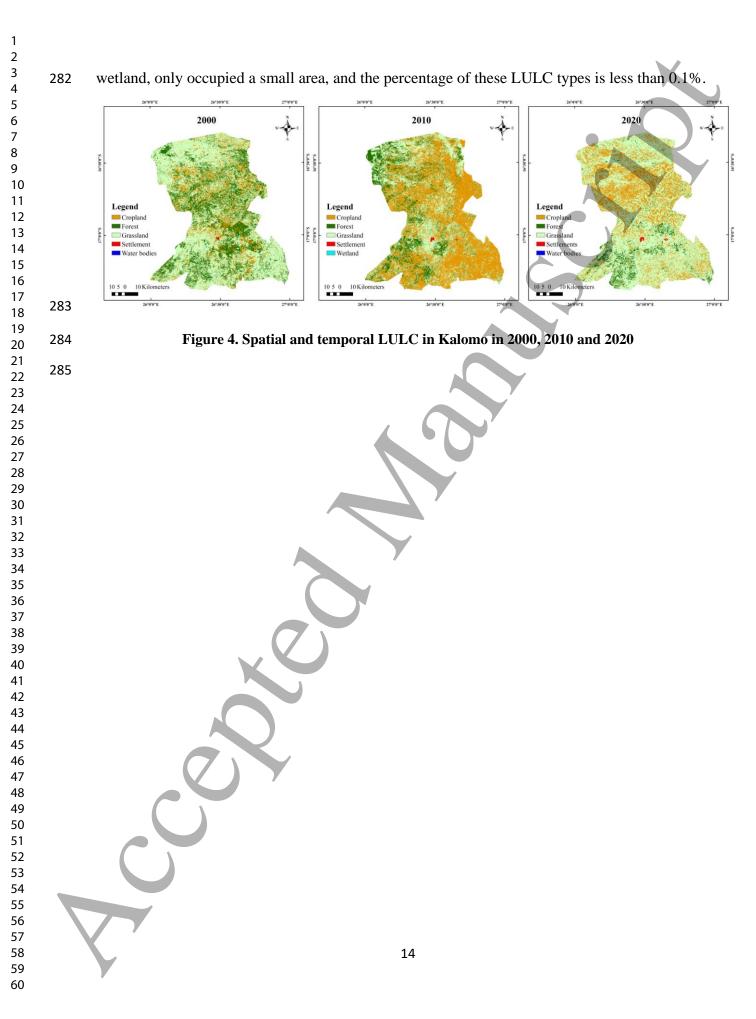
The miombo woodlands in Zambia have a high diversity of plants, animals, and avifauna, while also serving vital ecological roles (Malunga et al 2021). However, the miombo woodlands are heavily fragmented due to anthropogenic interference, with only a few natural forest patches remaining. Safeguarding the trumpeter hornbill within Zambia's miombo woodlands is crucial to maintaining biodiversity and landscape connectivity amid escalating habitat fragmentation. Thus, it is important to monitor and evaluate the status of the trumpeter hornbill to ensure that it remains protected.

The habitat quality module of InVEST combined "information on LULC and the threats to biodiversity to produce habitat maps" (Tallis et al 2014). This module used habitat quality and rarity as proxies to represent the biodiversity of a landscape, and it also estimated the extent of habitat and vegetation type throughout the landscape, as well as their level of degradation (Tallis et al 2014). This module was based on the hypothesis that "areas with higher habitat quality supported higher richness of native species, and that decrease of habitat extent and quality led to a decline in species persistence" (Terrado et al 2016). This module was used to assess how the study areas provide suitable habitat for Trumpeter hornbills based on available data. The value of habitat quality is assigned to LULC types to show habitat suitability. The range of the value is between 0 to 1, where 1 indicates the highest habitat quality, while 0 means unsuitable habitat for certain species (Terrado et al 2016, Chu et al 2018). To visually display the habitat quality according to the output values of the habitat quality model, the equal interval breakpoint method in ArcGIS was applied to assign grades to three different habitat quality groups (Wang et al 2022b).

230 20



246	The specific data resources	and their descriptions are shown in Table_	1. All data is open-access
247		Table 1. Data sources and descriptions	
	Data name	Data description	Data resource
	Land use/Land cover	30m-resolution land-cover datasets in 2000 and 2010	https://rcmrd.africageopor al.com/
	Land use/Land cover	30m-resolution land-cover maps in 2020	Supervised Classification in the Environment for Visualizing Images (ENVI)
	Satellite images	Landsat-5 and Landsat-8 images	https://www.usgs.gov/
	Carbon stock parameters	Carbon storage data for different land use/land cover types	Dietz (2021); Day et al (2014); Forest Reference Emission Leve (2021); Gumbo et al (2018); IPCC 2006 report; Sialubanje e al (2017); Piyathilake et al (2022)
	Habitat quality parameters of Trumpeter Hornbill	Threat factors; sensitivity of each land-use class; maximum distance	Expert knowledge
	Road data	Main roads in Zambia	http://riskprofilesundrr.org
	Administrative boundary shapefile	Obtaining study area shapefile by cropping	https://data.grid3.org/
	Trumpeter Hornbill	Trumpeter Hornbill's distribution map	https://datazone.birdlife.o g/
248 249	In addition to using the above data, the <i>Greenhouse Gas Inventories (IPCC)</i>	te land cover classification of the study <i>area referred</i> to <i>in 2006</i> .	the Guidelines for National
250			
251			
7			
		11	


3. Results

3.1 Land use and land cover change

The results of the study areas are presented in Figures 3 and 4, and the area of land cover and land-cover change in the study areas are summarized in Table 2. In KNP, there was no significant land-use conversion observed from LULC maps. Between 2000 and 2020, the land-use cover was dominated by grassland, and it was mainly distributed in the middle and northern parts of the study area. The area of grassland decreased from 59% (13, 245 km²) 2000 to 49% (10,832 km²) in 2010, but subsequently increased to 53% (11,868 km²) of the total area in 2020. The forest was the second dominant land-use type, and the area of the forest increased from 38% (8484 km²) in 2000 to 45% (10,070 km²) in 2020. The area of water bodies was relatively stable, and their area decreased from 1.8% (398 km²) in 2000 to 1.5% (331 km²) in 2020. Both water bodies and wetlands decreased from 2000 to 2020, losing 67 km² and 66 km², respecively.

268 269				10, and 2020 for KNP		
	Areas	LULC Area (km ²)	2000	2010	2020	Changes(2000-202
		Cropland	80.86 (0.36) *	76.03 (0.34)	4.56 (0.02)	-76.30 (-0.34)
		Forest	8484.50 (38.03)	10767.03 (48.26)	10070.34 (45.14)	1585.83(7.11)
	KNP	Grassland	13244.92 (59.37)	10832.22 (48.55)	11867.85 (53.20)	-1377.07 (-6.17)
		Water bodies	398.01 (1.78)	409.32 (1.83)	331.22 (1.48)	-66.79 (-0.30)
		Wetland	100.24 (0.45)	223.86 (1.00)	34.41 (0.15)	-65.83 (-0.29)
		Cropland	1263.38 (15.64)	4058.34 (50.26)	2158.15 (26.73)	894.76 (11.08)
		Forest	2115.29 (26.19)	1313.73 (16.27)	544.39 (6.74)	-1570.90 (-19.45)
	Kalomo	Grassland	4684.10 (58.01)	2685.28 (33.25)	5355.42 (66.33)	671.32 (8.32)
	District	Settlement	4.55 (0.06)	8.88 (0.11)	10.90 (0.14)	6.35 (0.08)
		Water bodies	7.96 (0.10)	0.00 (0)	5.53 (0.07)	-2.43 (-0.03)
		Wetland	0.00 (0)	9.12 (0.11)	0.00 (0)	0.00 (0)
270		· · ·	• •), others as same. Th		NP
271	and Kalo	mo district is 22,308	$.85 \text{ km}^2$ and $8,0/5$	32 km ² , respectively		
272						
273	In	the Kalomo district	, there was a signific	cant land-use transitio	on between 2000 an	d 2020.
274	Generally	, the pattern of land	use transition was c	haracterized by the cl	hange from forest to)
275	-	_		l from 26% (2115 km	-	
276	1			% (544 km ²) in 2020		
277				to 50% (4058 km ²)	-	-
278				land was the dominar		2000,
279				reased to 33% (2685	• 1	
280		-		ment steadily increase	-	m ²) in
281				nd-use types, includin		-
	5		13	3		

3.2 Assessment of Ecosystem Services

3.2.1 Carbon storage

KNP. The spatial changes of carbon storage in KNP are spatially shown in Figure 5. The maps show that the range of carbon stock in each grid cell is from 0 to 12.56 t/C. During 2000-2020, the carbon storage of KNP slightly changed and exhibited overall growth. Total carbon storage values were 189, 209 and 204 million t/C in 2000, 2010, and 2020, respectively. The carbon value changed with the exchange of LULC classes. The corresponding average carbon densities were 8.24, 8.43 and 7.66 tons per grid cell in 2000, 2010, and 2020, respectively. The carbon storage was mainly distributed in the southern and eastern areas because forests occupied these areas and exhibited an increase in carbon storage from 2000 to 2010, then decreased from 2010 to 2020. However, less carbon storage appeared in the central-northern area because grassland has a lower ability to store carbon. Carbon stored in this area increased gradually from 2000 to 2020 because of decreasing grassland. There was no carbon storage in Itezhi-Tezhi Lake and Kafue River because the carbon stored in such water bodies is negligible.

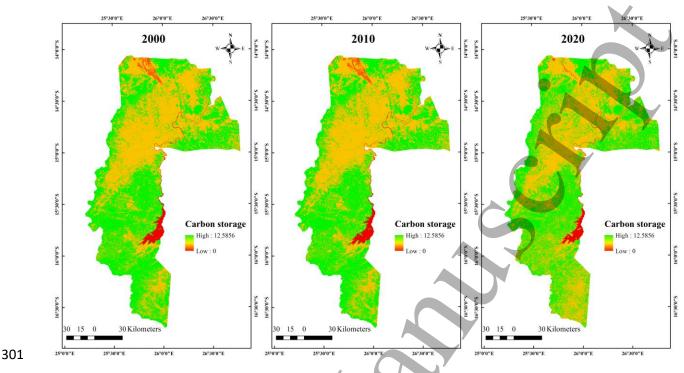
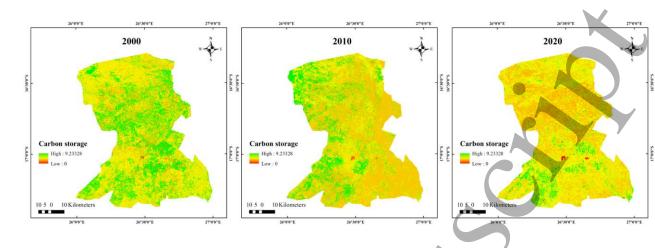
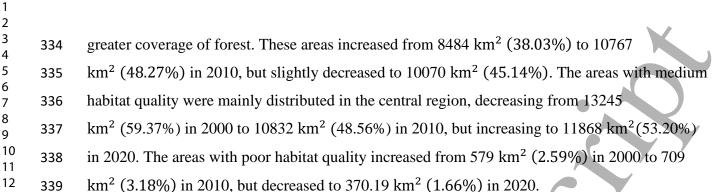



Figure 5. Spatial distribution of carbon storage in KNP

Kalomo. The change in carbon storage in Kalomo is spatially shown in Figure 6. The carbon storage of the Kalomo district continually decreased from 2000 to 2020. The average carbon densities were 5.8, 5.0, and 4.8 tons per grid cell in 2000, 2010, and 2020, respectively. The total carbon storage values were 52.04, 44.94, and 43.31 million t/C, respectively. Reduced carbon storage was caused by severe land conversion, whereby forest was converted into cropland. Over the past twenty years, there have been about 9 million tons of carbon loss due to agricultural expansion and associated forest loss. Regarding spatial distributions, carbon storage mainly decreased across the study area from 2000 to 2010, except for the northwestern areas because agriculture expanded from the center to the periphery. Then carbon continually decreased from 2010 to 2020, and limited carbon remained in the center and southwestern area in 2020 because the fallow areas had relatively low vegetation coverage.

Figure 6. Spatial distribution of carbon storage in Kalomo district

3.2.2 Habitat quality


To visually represent the output values of the habitat quality model, the equal interval breakpoint method was applied (Wang et al 2022b). This method was used to assign grades to three habitat quality groups, which were designated as low, medium, and high, and these classes represent poor habitat quality, medium habitat quality, and high habitat quality, respectively (Table <u>3</u>). Spatial distributions of habitat quality maps are shown in Figures <u>7</u> and <u>8</u>, and the statistical analysis of the changes in habitat quality is presented in Table <u>4</u>. The area in green shows high habitat quality, while the area in red shows poor habitat quality.

35 325

Table 3. Classification values of trumpeter hornbill's habitat quality in study areas

Range of values	Description
0-0.33	Poor habitat quality
0.33 - 0.67	Medium habitat quality
0.67 - 1	High habitat quality
	0 - 0.33 0.33 - 0.67

KNP. Overall, habitat quality for trumpeter hornbill in KNP has improved from 2000 to
2020, with an increase of 1586 km² (7.11%) in high habitat quality, but a decrease of 209
km² (0.94%) and 1377 km² (6.17%) in poor and medium habitats, specifically (Table <u>4</u>). The
overall habitat grade increased from 0.59 in 2000 to 0.65 in 2010 but slightly decreased to 0.64
in 2020. From Figure <u>7</u>, we can see that medium and high grades dominated the habitat quality
of KNP because grasslands and forests occupied 97% of the whole area. The area with high
habitat quality grade was mainly distributed in the south and northeastern regions, where there is

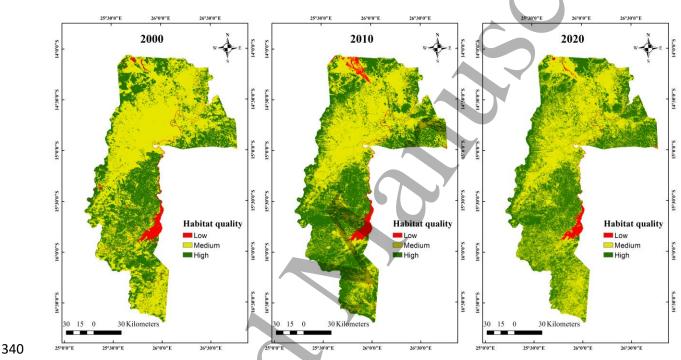
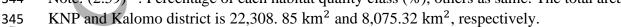



Figure 7. Spatial distribution pattern of trumpeter hornbill's habitat quality in KNP, in 2000, 2010,
and 2020

Table 4. Area and percentage of trumpeter hornbill's habitat quality in KNP and Kalomo $(km^2,\%)$

Areas	Classes	2000	2010	2020	Changes (2000-2020
	Low	578.83 (2.59) *	709.07 (3.18)	370.19 (1.66)	-208.64 (-0.94)
KNP	Medium	13245.31 (59.37)	10832.21 (48.56)	11867.94 (53.20)	-1377.37(-6.17)
	High	8484.36 (38.03)	10767.21 (48.27)	10070.34 (45.14)	1585.98 (7.11)
Kalomo	Low	1277.71 (15.82)	4076.92 (50.49)	2175.36 (26.94)	897.65 (11.12)
District	Medium	4683.71 (58.00)	2684.47 (33.24)	5355.42 (66.32)	671.71 (8.32)
	High	2113.80 (26.18)	1313.63 (16.27)	544.38 (6.74)	-1569.42 (-19.44)

Page 19 of 37

1 2		
3 4 5 6 7 8 9 10 11	347	Kalomo. Overall, the habitat quality for the trumpeter hornbill in the Kalomo district was
	348	poor and dominated by low and medium grades. The average habitat quality scores were 0.44,
	349	0.26, and 0.27 in 2000, 2010, and 2020, respectively. These values indicated that the trumpeter
	350	hornbill's habitat degraded between 2000 and 2020. The three groups of habitat quality in
	351	Kalomo are shown in Table <u>4</u> . A total of 1569 km^2 of high habitat quality were lost from 2000 to
12	352	2020, representing 19.44% of the total area. From the spatial distribution maps (Figure $\underline{8}$), the
13 14	353	habitat quality distribution was highly consistent with the distribution characteristics of land use
15 16	354	types. High habitat quality was mainly concentrated in the central and southwestern areas in
17 18	355	2000, accounting for 2114 km^2 (26.18%), because these were areas with a concentrated
19	356	distribution of forest. However, poor habitat quality was distributed in the central and
20 21 22 23	357	northeastern regions, which were occupied by agriculture, accounting for 1278 km ² (15.82%).
	358	Medium habitat quality was evenly distributed in the rest of the areas, with 4684km ² , accounting
24 25	359	for 58.00% of the total area. From 2000 to 2010, the habitat quality degraded from east to west,
26	360	and most areas of high habitat quality were replaced by poor habitat quality. The limited high
27 28	361	habitat quality was distributed in the northwestern and southwestern regions, with 1314
29 30	362	km ² , only accounting for 16.27 %. While poor habitat quality dominated in 2010, occupying
31 32	363	half of the area (50.49%) with 4077 km ² . These changes were caused by agricultural expansion
33	364	between 2000 and 2010. From 2010 to 2020, the area of high habitat quality continually
34 35	365	decreased, and only a small portion of high habitat quality located in the southwestern regions
36 37	366	was retained, with 544 km ² (6.74%). The poor habitat quality decreased from 4076 km ²
38	367	(50.49%) in 2010 to 2175 km ² (26.94%) in 2020, but the medium habitat quality increased from
39 40	368	2684 km ² (33.24%) in 2010 to 5355 km ² (66.32%).
41		

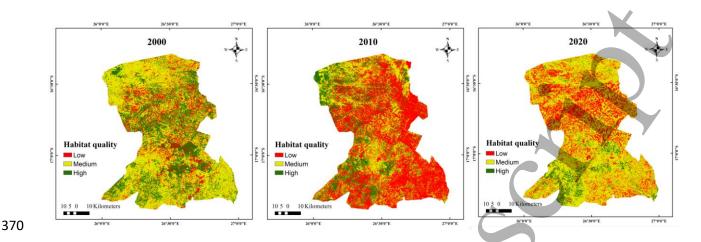


Figure 8. Spatial distribution pattern of trumpeter hornbill's habitat quality in Kalomo, in 2000,
2010, 2020

4. Discussion

This study pioneers the examination of the impacts of diverse land cover changes on ES in southern Zambia over a period of 20 years. It introduced an effective methodology for monitoring land-use changes' influence on carbon storage and habitat quality in two contrasting environments: the agricultural landscape of Kalomo district and the protected area of KNP. The results indicated that KNP has effectively maintained its forest and grassland ecosystems by preventing substantial land-use transitions between 2000 and 2020. However, Kalomo district has undergone a rapid and dramatic transformation, with forests being converted into cropland due to the surging demands of agriculture, accompanied by shifts in grassland and settlement patterns. These transitions were primarily influenced by disparate management strategies. While KNP has remained under stringent protection measures to deter human interference, agricultural activities have witnessed substantial growth in the Kalomo region over the past two decades. The study also found that carbon storage and overall habitat quality, as evidenced by the distribution of the trumpeter hornbill, have been enhanced in KNP but degraded in Kalomo district. These results indicate that LULC changes impacted carbon stock and habitat quality, and this conclusion is supported by further evidence (Solomon et al 2018, Fusco et al 2021).

389 4.1 Analysis of land-use change

The results of this study indicate that KNP avoided deforestation between 2000 and 2020, and forest areas significantly increased from 38% (8484 km²) in 2000 to 45% (10070 km²) in

Page 21 of 37

2020. This finding differs from common conclusions about the effectiveness of PAs in Africa. Some scholars state that establishing PAs cannot prevent habitat loss but could reduce forest loss to mitigate such loss (Cazalis et al 2020, Riggio et al 2019), Rosa et al 2018, Bowker et al 2017). In contrast to these studies, our results show opposing trends of land cover change at the single-park scale and support that land transition could be prevented and vegetation cover could increase due to the effects of conservation implementation. The cropland in KNP represented less than 1%, decreasing from 0.34% (76 km²) in 2000 to 0.02% (4.56 km²) in 2020. This reduction can be attributed to restricted cultivation activities within the park, emphasizing its commitment to conservation, as noted by Mwima in (2001).

However, land-use change in the Kalomo has undergone a typical trajectory from forest conversion to cropland for commercial crops. The forest area continually decreased from 26% (2115 km²) in 2000 to 7% (544 km²) in 2020, while cropland sharply increased from 15% (1263 km²) in 2000 to 27% (2158 km²) in 2020. These changes can be attributed to various factors, including leakage from KNP and the escalating demand for food and charcoal from neighbouring provinces. The establishment of KNP resulted in the forced relocation of at least five chiefdoms, and these communities heavily rely on natural resources for their livelihoods (Namukonde and Kachali 2015). Such displacement has led to intensified pressure on resources outside the park. Studies have demonstrated significant LULC change in GMAs and found that a total of 125,108 ha of forest being converted into cropland (Dietz 2021). Kalomo district is in proximity to KNP and its nine GMAs, so it's plausible to infer that deforestation in Kalomo is closely linked to leakage from the park. Furthermore, the rampant deforestation in Kalomo district is fueled by agricultural expansion and charcoal production. Policy initiatives such as the establishment of farm blocks in Zambia, including Kalomo district, have stimulated investment in agriculture, exacerbating land conversion (Chilombo 2021). Urbanization, a prominent trend in Zambia, has heightened the demand for charcoal, particularly in densely populated areas like Lusaka and Copperbelt, which heavily rely on imports from other provinces (USAID 2017). This is a general trend elsewhere due to population dynamics, rising inequality, migration, agricultural commodity expansion, legal and illegal extraction of natural resources, urbanization, and poor and overlapping or incompatible governance structures (Moombe et al 2020, Reed et al 2022).

There are no settlements within KNP, but the area of settlements in Kalomo district has consistently increased from 2000 to 2020. The primary factors behind the relocation of communities from KNP for conservation purposes were identified by Mwima in (2001). However, it is worth noting that the population of the Kalomo is experiencing a growth rate of 4.4% (CSO, 2010). The water bodies and wetlands in both regions exhibited a persistent decline from 2000 to 2020. Specifically, in KNP, the area of water bodies and wetlands decreased by 67 km^2 and 66 km^2 , respectively. The wetlands of the Kalomo district disappeared in 2020. The primary cause of these alterations can be traced to the impact of drought. Climate change has caused many extreme environmental events in Zambia, including more frequent and intense seasonal droughts, increased valley temperature and extended periods of drought (Rosen et al 2021). Musonda et al (2020) stated that the drought trend in Zambia significantly increased between 1981 and 2017, and twice severe droughts in 2005-2006 and 2015-2016, leading to serious concern for agricultural and hydrological sectors in drought-prone areas of southern Zambia (Musonda et al 2020). In addition, Kalomo district is situated in one of the most arid areas of Zambia, characterized by ephemeral and non-perennial streams and rivers that rapidly diminish after the rainy season (Republic-of-Zambia 2021). Deforestation in Kalomo has resulted in the loss of vegetation cover along riparian zones, accelerating the depletion of water sources (Republic-of-Zambia 2021). The district, predominantly inhabited by smallholder farmers, witnesses unsustainable agricultural practices, including direct extraction of water from rivers and streams for agriculture and livestock. These practices exacerbate the drying process of these vital water sources (Upla et al 2022).

442 4.2 Analysis of Carbon Storage Change

Carbon storage increased in KNP but declined in Kalomo from 2000-2020. The dynamics of LULC crucially impact ecosystem service provision (Rai et al 2018), with forestland playing a significant role in carbon sequestration and storage in the miombo woodlands (Pelletier et al 2018). Therefore, changes in forest land significantly impact carbon storage. In KNP, the growth of forest land significantly enhanced carbon storage. The increase in forest cover is the key to improving carbon sequestration due to trees role as carbon sinks (Nunes et al 2019). This finding is consistent with previous studies that showed that increased vegetation cover in PAs is effective at preventing carbon loss (Lobora et al 2017). In Kalomo district, the

decrease in the forest during 2000–2020 was attributed to deforestation caused by agricultural expansion and charcoal production driven by rapid urbanization and as a response to environmental shocks such as droughts, both locally and nationally. Between 2000 and 2010, many miombo forests were cleared for agriculture and charcoal production, contributing to carbon loss. This is also consistent with previous findings. Williams et al (2008) stated that the clearance for agriculture could reduce the loss of stem wood carbon stocks. Also, Bulusu et al (2021) and Gumbo et al (2018) found that deforestation in miombo woodlands was driven by land clearance, and grassland and forest were cleared for agriculture and wood extraction for energy. These land transitions led to a decrease in carbon stored across miombo woodlands (Jew et al 2016).

4.3 Analysis of Habitat Quality Change

The habitat quality of trumpeter hornbills has been enhanced in KNP but degraded in Kalomo district. Trumpeter hornbill is a forest-dependent species that feeds on fruits (Chibesa and Downs 2017). Grassland can also provide food resources for the trumpeter hornbill, as this species adds other food resources to meet their food requirements, such as insects and small reptiles (Lenz et al 2015). Therefore, habitat quality change is related to forest and grassland changes. In KNP, the predominant land-use change was an increase in forests during 2000-2020, with the increased forest cover providing more habitat and food for trumpeter hornbills, effectively improving the habitat quality of this species. This finding is consistent with Cazalis et al (2020), who showed that PAs were effective at conserving forest-dependent bird species. In the Kalomo district, the Kalomo Hills Local Forest Reserve was destroyed by agricultural encroachment following settlement (Moombe et al 2020, Mbanga et al 2021). The settlement of more than 12,700 farmers in the reserve has led to an increased demand for agricultural production, resulting in the conversion of forests and grasslands into productive land for crops, particularly maize, to meet household income needs through sales (Mbanga et al 2021), leading to a decline in the habitat quality of trumpeter hornbill. Increased charcoal production to satisfy urban demand has further and significantly contributed to forest loss.

4.4 Analysis of the Impact of Land Management Policies

KNP is a national asset that brings benefits at the national level and is important for the conservation of unique biodiversity (Vezina et al 2020). This park is surrounded by nine GMAs which provide economic and ecological buffer zones for KNP (Dietz 2021, Agnes 2015). Meanwhile, KNP has attracted significant investment in conservation initiatives. A notable example is that the United Nations Development Programme launched a conservation project to support the management of KNP (United Nations Development Programme 2011, African Parks 2021). KNP is the oldest and largest national park in Zambia, and the Zambia Wildlife Authority (ZAWA) is solely responsible for the management of KNP (Chanda 2007). This dedicated management, backed by the strong support of the Zambian Government, ensures the effective protection of the KNP. Hence, the prevention of deforestation in KNP is a result of the combined efforts of conservation initiatives.

In contrast to KNP, the Kalomo region prioritizes economic development over ecological conservation. The Kalomo district, known for its strong tradition of maize and livestock farming, is largely acknowledged as the agricultural hub of Zambia (Moombe et al 2020). The implementation of measures promoting the cultivation of maize has significantly contributed to the economic development of the Kalomo district (Amondo et al 2019). The government supported through the Fertilizer Support Program (FSP), has generated a significant increase in maize production in Zambia since 2002/03, increasing the number of smallholder farmers, and the maize area cultivated by smallholders also increased from about 750,000 hectares in 2002/03 to 1,300,000 hectares in 2010/11 (Chamberlin et al 2014). The significant promotion of maize production between 2000 and 2010 has led to Kalomo being one area with a major maize surplus (USAID 2017).

Despite operating under separate land management policies, KNP and Kalomo encounter distinct difficulties. KNP appears to be a classic case of strict, yet repressive, conservation in practice in Zambia. Its substantial restrictions on access to natural resources bear profound socio-economic consequences for the adjacent GMA communities (Vezina et al 2020). Communities proximate to the KNP are heavily dependent on natural resources for their livelihoods but are excluded from the park to the extent that most people in these communities (erroneously) consider visiting the park to be illegal (Watson et al 2014, Namukonde and Kachali 2015, Milupi et al 2021). These limitations have resulted in a lack of access to food and heightened strain on

resources, which in turn undermines the effectiveness of KNP's conservation endeavours beyond the park's boundaries. In addition, the demand for land in the GMAs can rise due to ongoing population expansion, and open spaces are expected to grow in the next few years, which could undermine KNP's conservation efficacy. Indeed, evidence of settlements is already visible at the border of KNP (Dietz 2021). Therefore, it is evident that a sectoral approach to conservation within KNP, that fails to consider local socio-economic needs, while conserving biodiversity within the park, is perpetuating environmental collapse beyond the park barriers. To address this issue, a more rigorous approach is needed, including awareness and education programmes to engage local communities and improve their access to the parks, as well as a more equitable share of the benefits generated by the park. Conversely, the Kalomo district stands as a typical case where economic development is achieved at the expense of environmental sacrifice, and the uncoordinated governance on land has enlarged environmental problems. Agriculture development has contributed to livelihoods and economic growth but led to severe deforestation in Kalomo (Moombe et al 2020, Mbanga et al 2021). In addition, Mbanga et al (2021) stated that agricultural land is expanding without proper monitoring and planning. Furthermore, forest resource management was centralized, and local communities and other stakeholders were excluded from the forest management and forest-resource-utilization systems (Wang et al 2022a). This region is facing increasing pressure on the land due to uncoordinated governance (Upla et al 2022), and rapid population growth, heavy reliance on agriculture for the economy, and declining soil fertility may further exacerbate this pressure. Hence, it is essential to develop more coordinated landscape management plans that harmonize local livelihood concerns with conservation targets and promote sustainable

agricultural practices that enhance productivity while minimizing the negative impact on the
environment. We provide more specific recommendations for improving landscape management
in southern Zambia below.

- **5. Recommendations**
 - **5.1 Recommendation for the management of PAs**

In Zambia, PAs cover a significant portion of the land (40%), with 20 national parks
(64,000km²) and 36 GMAs (167,000km²) established for the primary goal of conserving

biodiversity (Lindsey et al 2014, Hou-Jones et al 2019, Lecina-Diaz et al 2019), with Zambian national parks regarded as strict PAs where human settlement is not permitted (Lindsev et al 2014). However, the traditional approach of establishing strict PAs has been criticized for inadequately considering the needs of local communities (Mfune 2014, Vasquez and Sunderland 2023), leading to conflicts over resources and increasing pressure on the surrounding landscapes (Vezina et al 2020). A sectoral approach to strict PAs to protect biodiversity and ecosystem services that disregard local well-being needs is unlikely to be successful over the long term in Zambia (Batáry et al 2011). The effectiveness of PAs is strongly related to conservation governance and policy frameworks, and the most positive results can be seen when Indigenous Peoples and local communities play a central role in decision-making and have clear lines of authority (Dehmel et al 2022). Therefore, a more holistic landscape approach that integrates the management of national parks and GMAs and considers broader landscape socio-cultural and political-economic dynamics should be prioritized to better harmonize conservation and development objectives.

To achieve the long-term conservation and sustainability of PAs, several recommendations can be made. Firstly, involving local communities in decision-making processes related to the management of PAs and broader land-use planning processes is crucial to better understand their perceptions, incorporate their knowledge and needs, and ensure their support for specific, contextually appropriate types of conservation efforts; the long-term success of conservation is largely dependent on their support. Secondly, increasing commitments to monitoring land-use change and strengthening cross-scale and multi-sector dialogue can contribute to preventing the expansion of settlements closer to PAs and preserving biodiversity and ecosystem services through clarification of rights, responsibilities, and access to information and resources. Finally, exploration of alternative culturally appropriate livelihood strategies that are pro-environment or sustainably used, rather than simply depleting the natural resource base can help reduce environmental pressure and improve local well-being. Such an integrated approach can significantly contribute towards the goals and targets of the Global Biodiversity Framework by seeking to conserve existing PAs but also enhance ecosystem connectivity, support restoration of surrounding degraded areas, strengthen landscape resilience, and ensure the viability and sustainability of livelihood activities, particularly in neighbouring communities with high natural resource dependence.

2	
3	
4	
5	
6	
7	
ć	
8	
9	
	0
1	1
1	
	2
1	3
	4
1	-
1	5
1	6
2	-
1	7
1	8
	9
2	0
-	1
2	1
2	2
r	3
2	2
2	4
ว	5
2	5
2	6
2	7
2	, -
2	8
2	9
	0
3	1
2	
3	
3	3
	4
3	5
	6
3	0
3	7
2	8
3	0
3	9
۵	0
4	1
4	2
	3
4	4
4	
4	6
4	7
4	8
4	9
5	
5	1
5	2
5	3
5	
5	5

56 57 58

59 60

569 5.2 Recommendations for the management of agricultural landscapes

Zambia has suffered high rates of deforestation, driven largely by agricultural expansion 570 571 (Richardson et al 2021), resulting in an annual deforestation rate of 250,000 to 300,000 hectares per year (Phiri et al 2022). In addition, rainfed agricultural systems are susceptible to extreme 572 climatic events, such as more frequent, intense, and extended droughts (Black et al 2016, Ngoma 573 et al 2021). To address these challenges, it is necessary to pursue more sustainable and 574 diversified agricultural production that avoids contributing to further land clearing, thereby 575 promoting agriculture development and biodiversity conservation while responding to the 576 impacts of climate change. 577

Agri-environmental management (AEM) has been identified as a crucial strategy for 578 biodiversity conservation in cropland (Batáry et al 2011, Mfune 2014, Batáry et al 2015), with 579 agricultural landscapes increasingly recognized as domains for conserving biodiversity and 580 managing ES (Leakey 2012, Reed et al 2016). Conservation agriculture (CA) is one of the 581 significant measures of AEM (Mfune 2014), and has the potential to resolve conflicts between 582 biodiversity conservation and economic development by increasing crop yields and diversifying 583 crop types, thereby improving the livelihoods of farmers while reducing environmental risks 584 (Mfune 2014, FAO and UNDP 2020). Therefore, CA could be promoted in agricultural 585 landscapes in southern Zambia, and recent research suggested that there is local demand to 586 587 increase the capacity for such approaches in Kalomo (Reed et al 2022). Meanwhile, incorporating Indigenous and local perspectives within such processes can further strengthen 588 integrated landscape management due to their role as holders of specific place-based social-589 ecological knowledge. In Zambia, the traditional knowledge of the Tonga people has contributed 590 591 to the development of sustainable livelihood practices and agricultural methods, enabling them to live sustainably (Yanou et al 2023). Therefore, promoting the engagement of multiple 592 stakeholder groups, including Indigenous People and the local community, in land-use planning 593 and natural resource management can help to generate more suitable land management solutions 594 595 that satisfy the needs of humanity (food and energy production), while mitigating environmental harm (deforestation) within agricultural landscapes. 596

6. Conclusion

This study employed both quantitative and qualitative methods to assess the impacts of LULC changes on the ecosystem functionality of tropical landscapes in southern Zambia between 2000 and 2020. We used the most reliable and recent datasets to spatially assess LULC change, carbon storage, and the trumpeter hornbill's habitat quality. We visualized these changes on 30-meter resolution maps, providing an important resource for decision-makers and managers for future contextualized natural resource management and land-use planning interventions. Our assessment involved a comparative analysis of ES changes in two distinct landscapes: a protected area (KNP) and an agricultural landscape (Kalomo) over time. The results revealed the direct influence of policy implementation on LULC, thereby significantly affecting the functionality of landscapes that provide ES.

In summary, our study offers valuable insights into the spatial distribution of carbon storage and the habitat of the trumpeter hornbill. The practical assessment of carbon stock and habitat quality of specific species could guide how these carbon and biodiversity targets can be incorporated into national policies and implemented in climate change mitigation and adaptation (Soto-Navarro et al 2020, Munang et al 2013, Sintayehu 2018). In addition, the conservation of trumpeter hornbill is important and closely tied to forest management practices in Zambia, as this species can facilitate functional connectivity of the landscapes. By assessing the trumpeter hornbill's habitat quality, our research empowers governments and stakeholders to specifically express their conservation and restoration objectives for ecosystem services in geospatial.

617 Our study highlights a crucial contrast: while strict enforcement measures have 618 succeeded in conserving biodiversity habitats within KNP, a mix of pressures has led to rapid 619 environmental degradation outside the park and across the Kalomo district. To move towards 620 more sustainable and equitable landscape management that responds to the goals of the Global 621 Biodiversity Framework, we suggest a need for a more holistic approach in the region that better 622 accounts for local livelihood needs and broader political-economic and social dynamics.

1 2		
2 3	~~ .	7 Defense est
4	624	7. References
5 6	625	African Parks. (2021). The government of zambia to boost the protection of Kafue National Park.
7	626	Retrieved February 28, 2023, from https://www.africanparks.org/government-zambia-
8	627	boost-protection-kafue-national-park
9	027	boost-protection-karae-national-park
10	628	Agnes, M. (2015). An Assessment of Tourism Development in Kafue National Park-North
11		
12	629	(Doctoral dissertation, The University of Zambia, Lusaka, Zambia).
13 14	630	Amondo, E., Simtowe, F., Rahut, D. B., & Erenstein, O. (2019). Productivity and production risk
14	631	effects of adopting drought-tolerant maize varieties in Zambia. International Journal of
16	632	Climate Change Strategies and Management, 11(4), 570–591.
17	633	https://doi.org/10.1108/IJCCSM-03-2018-0024
18		
19	634	Bagstad, K. J., Semmens, D. J., Waage, S., & Winthrop, R. (2013). A comparative assessment of
20	635	decision-support tools for ecosystem services quantification and valuation. Ecosystem
21	636	services, 5, 27-39. https://doi.org/10.1016/j.ecoser.2013.07.004
22 23	627	Datám D. Dáldi A. Klaija D. & Tashamtha T. (2011). Landarana madamatad higdiyamitu
24	637	Batáry, P., Báldi, A., Kleijn, D., & Tscharntke, T. (2011). Landscape-moderated biodiversity
25	638	effects of agri-environmental management: A meta-analysis. <i>Proceedings of the Royal</i>
26	639	Society B: Biological Sciences, 278(1713), 1894–1902.
27	640	https://doi.org/10.1098/rspb.2010.1923
28	641	Batáry, P., Dicks, L. V., Kleijn, D., & Sutherland, W. J. (2015). The role of agri-environment
29	642	schemes in conservation and environmental management. Conservation Biology, 29(4),
30 31	643	1006–1016. https://doi.org/10.1111/cobi.12536
32		
33	644	Berihun, M. L., Tsunekawa, A., Haregeweyn, N., Tsubo, M., & Fenta, A. A. (2021). Changes in
34	645	ecosystem service values strongly influenced by human activities in contrasting agro-
35	646	ecological environments. <i>Ecological Processes</i> , 10(1), 1–18.
36	647	https://doi.org/10.1186/s13717-021-00325-1
37 38	648	BirdLife International. 2018. Bycanistes bucinator. The IUCN Red List of Threatened Species
38 39	649	2018: e.T22682548A130081383.
40	045	
41	650	Black, E., Tarnavsky, E., Maidment, R., Greatrex, H., Mookerjee, A., Quaife, T., & Brown, M.
42	651	(2016). The use of remotely sensed rainfall for managing drought risk: A case study of
43	652	weather index insurance in Zambia. Remote Sensing, 8(4).
44	653	https://doi.org/10.3390/rs8040342
45 46	CE 4	Devileer I.N. D. Ver, A. Advent, I.M. & Comming, C. S. (2017). Effectiveness of Africa's
46 47	654	Bowker, J. N., De Vos, A., Ament, J. M., & Cumming, G. S. (2017). Effectiveness of Africa's
48	655	tropical protected areas for maintaining forest cover. <i>Conservation Biology</i> , <i>31</i> (3), 559–569.
49	656	https://doi.org/10.1111/cobi.12851
50	657	Brockington, D., & Igoe, J. (2006). Eviction for Conservation : A Global Overview Author (s):
51	658	Daniel Brockington and James Igoe Published by : Ashoka Trust for Research in Ecology
52	659	and the Environment and Wolters Stable URL : https://www.jstor.org/stable/26396619
53	660	Daniel Brockington and Jam. Conservation and Society, 4(3), 424–470.
54 55		
55 56	661	Bulusu, M., Martius, C., & Clendenning, J. (2021). Carbon stocks in miombo woodlands:
57		
58		29
59		
60		

1 ว		
2 3 4	662	Evidence from over 50 years. Forests, 12(7). https://doi.org/10.3390/f12070862
5 6 7 8	663 664 665	Bush, P. (2014). Traditional Herbal Medicines and the Outcomes of Severe Malaria in the Kalomo District, Zambia (Doctoral dissertation, Walden University, Minnesota, United States).
9 10 11 12	666 667 668	 Cazalis, V., Princé, K., Mihoub, J. B., Kelly, J., Butchart, S. H. M., & Rodrigues, A. S. L. (2020). Effectiveness of protected areas in conserving tropical forest birds. <i>Nature Communications</i>, 11(1), 1–8. https://doi.org/10.1038/s41467-020-18230-0
13 14 15 16 17 18	669 670 671 672	Chamberlin, J., Sitko, N. J., Kuteya, A., Lubungu, M., & Tembo, S. (2014). <i>Maize market</i> <i>coordination in Zambia: An analysis of the incentives and obstacle to improved vertical</i> <i>and horizontal marketing arrangements</i> (Technical report No. 2). Indaba Agricultural Policy Research Institute (IAPRI). https://doi.org/10.13140/RG.2.2.22250.41929
19 20 21	673 674	Chanda, J. (2007). Fire management plan for Kafue National Park and its surrounding game management areas. <i>Chilanga: Zambia Wildlife Authority</i> .
22 23 24 25	675 676 677	Chibesa, M., & Downs, C. T. (2017). Factors determining the occupancy of Trumpeter Hornbills in urban-forest mosaics of KwaZulu-Natal, South Africa. <i>Urban Ecosystems</i> , 20(5), 1027– 1034. https://doi.org/10.1007/s11252-017-0656-3
26 27 28 29	678 679 680	Chilombo, A. (2021). Multilevel governance of large-scale land acquisitions: a case study of the institutional politics of scale of the farm block program in Zambia. <i>Land use policy</i> , <i>107</i> . https://doi.org/10.1016/j.landusepol.2021.105518
29 30 31 32 33 34	681 682 683 684	Chu, L., Sun, T., Wang, T., Li, Z., & Cai, C. (2018). Evolution and prediction of landscape pattern and habitat quality based on CA-Markov and InVEST model in hubei section of Three Gorges Reservoir Area (TGRA). <i>Sustainability (Switzerland)</i> , <i>10</i> (11). https://doi.org/10.3390/su10113854
35 36 37 38	685 686 687	Cooper, T. J. G., Norris, K. J., & Cherry, M. I. (2020). A trait-based risk assessment of South African forest birds indicates vulnerability of hole-nesting species. <i>Biological Conservation</i> , 252, https://doi.org/10.1016/j.biocon.2020.10882.
39 40 41	688 689	CSO (2012). 2010 Census of population and housing. Population summary report. March 2012. Central statistical office, Lusaka, Zambia.
42 43 44 45 46	690 691 692 693	Daily, G. C., Polasky, S., Goldstein, J., Kareiva, P. M., Mooney, H. A., Pejchar, L., Ricketts, T. H., Salzman, J., & Shallenberger, R. (2009). Ecosystem services in decision making: Time to deliver. <i>Frontiers in Ecology and the Environment</i> , 7(1), 21–28. https://doi.org/10.1890/080025
47 48 49 50 51 52	694 695 696 697	 Dehmel, N., Franks, P., Schreckenberg, K., Beresford, A., Buchanan, G., & Dawson, T. P. (2022). Relating Country-Level Governance and Tree Cover Loss in Sub-Saharan African Protected Areas: Identifying Knowledge Gaps and a More Nuanced Perspective. <i>Frontiers in Forests and Global Change</i>, 5(February), 1–14. https://doi.org/10.3389/ffgc.2022.807214
53 54 55 56	698 699 700	Deuteronomy, K., Elijah, P., & Imasiku, N. (2019). Deforestation impact on ecosystem services in Kamfinsa sub-catchment of Kafue River Basin in Zambia. <i>Journal of Ecology and The Natural Environment</i> , <i>11</i> (4), 33–45. https://doi.org/10.5897/jene2018.0692
57 58 59 60		30

2 3 4 5	701 702	Dietz, J. (2021). Scenario-based land use and land cover change modelling and its impact on tropical dry forests in Kafue National Park, Zambia.
6 7 8 9	703 704 705	Duarte, G. T., Ribeiro, M. C., & Paglia, A. P. (2016). Ecosystem services modeling as a tool for defining priority areas for conservation. <i>PLoS ONE</i> , 11(5), 1–19. https://doi.org/10.1371/journal.pone.0154573
10 11 12 13 14 15 16 17	706 707 708 709 710 711	 Elmhagen, B., Destouni, G., Angerbjörn, A., Borgström, S., Boyd, E., Cousins, S. A. O., Dalén, L., Ehrlén, J., Ermold, M., Hambäck, P. A., Hedlund, J., Hylander, K., Jaramillo, F., Lagerholm, V. K., Lyon, S. W., Moor, H., Nykvist, B., Pasanen-Mortensen, M., Plue, J., Lindborg, R. (2015). Interacting effects of change in climate, human population, land use, and water use on biodiversity and ecosystem services. <i>Ecology and Society</i>, 20(1). https://doi.org/10.5751/ES-07145-200123
18 19 20 21 22	712 713 714 715	Evers, C. R., Wardropper, C. B., Branoff, B., Granek, E. F., Hirsch, S. L., Link, T. E., & Wilson, C. (2018). The ecosystem services and biodiversity of novel ecosystems: A literature review. <i>Global ecology and conservation</i> , <i>13</i> , e00362. https://doi.org/10.1016/j.gecco.2017.e00362
23 24 25	716 717	FAO & UNDP. 2020. Conservation agriculture for climate change adaptation in Zambia: A cost-benefit analysis. Rome, FAO.
26 27 28 29 30	718 719 720 721	Fusco, J., Walker, E., Papaïx, J., Debolini, M., Bondeau, A., & Barnagaud, J. Y. (2021). Land Use Changes Threaten Bird Taxonomic and Functional Diversity Across the Mediterranean Basin: A Spatial Analysis to Prioritize Monitoring for Conservation. <i>Frontiers in Ecology</i> and Evolution, 9(March), 1–15. https://doi.org/10.3389/fevo.2021.612356
31 32 33 34	722 723 724	Grafius, D. R., Corstanje, R., Warren, P. H., Evans, K. L., Hancock, S., & Harris, J. A. (2016). The impact of land use/land cover scale on modelling urban ecosystem services. <i>Landscape</i> <i>Ecology</i> , <i>31</i> , 1509-1522. https://doi.org/10.1007/s10980-015-0337-7
35 36 37 38	725 726 727	Gula, J., & Phiri, C. G. (2020). Observations of Southern Ground-Hornbill Bucorvus leadbeateri groups in the Kafue National Park, Zambia. <i>Ostrich</i> , <i>91</i> (3), 267–270. https://doi.org/10.2989/00306525.2020.1803433
39 40 41 42	728 729 730	Henderson, K., & Loreau, M. (2018). How ecological feedbacks between human population and land cover influence sustainability. <i>PLoS Computational Biology</i> , 14(8), 1–18. https://doi.org/10.1371/journal.pcbi.1006389
43 44 45 46 47	731 732 733	 Hou-Jones, X., Franks, P., & Chung, J. (2019). Case study: Department of National Parks and Wildlife (DNPW), Zambia (Report). International Institute for Environment and Development. International Institute for Environment and Development (2019)
48 49 50 51	734 735 736	Jew, E. K. K., Dougill, A. J., Sallu, S. M., O'Connell, J., & Benton, T. G. (2016). Miombo woodland under threat: Consequences for tree diversity and carbon storage. <i>Forest Ecology</i> and Management, 361, 144–153. https://doi.org/10.1016/j.foreco.2015.11.011
52 53 54 55	737 738 739	Kalinda, T., Tembo, G., Kuntashula, E., Langyintuo, A., Mwangi, W., & La Rovere, R. (2010). Characterization of Maize Producing Households in Monze and Kalomo Districts in Zambia. 1–55. https://repository.cimmyt.org/handle/10883/1093
56 57	740	Keller, A. A., Fournier, E., & Fox, J. (2015). Minimizing impacts of land use change on
58 59 60		31

2		
3	741	ecosystem services using multi-criteria heuristic analysis. Journal of Environmental
4 5	742	Management, 156, 23–30. https://doi.org/10.1016/j.jenvman.2015.03.017
6	743	
7	744	Kuteya, A. N., Sitko, N. J., Chapoto, A., & Malawo, E. (2016). An In-depth Analysis of Zambia's
8	745	Agricultural Budget: Distributional Effects and Opportunity Cost (Working Paper No. 107).
9	746	Indaba Agricultural Policy Research Institute (IAPRI). https://www.iapri.org.zm/wp
10	747	content/uploads/2022/04/wp107_compressed.pdf
11		
12	748	Lanzas, M., Hermoso, V., de-Miguel, S., Bota, G., & Brotons, L. (2019). Designing a network of
13	749	green infrastructure to enhance the conservation value of protected areas and maintain
14	750	ecosystem services. Science of the Total Environment, 651, 541–550.
15	751	https://doi.org/10.1016/j.scitotenv.2018.09.164
16 17		
17 19	752	Leakey, R. R. B. (2012). Living with the trees of life: Towards the transformation of tropical
18 19	753	agriculture. CABI. https://doi.org/10.1079/9781780640990.0000
20	75 4	Leine Die L. Alexand A. D. Cierre M. Henry L. C. Wards L. & Deterre L. (2010). And
21	754	Lecina-Diaz, J., Alvarez, A., De Cáceres, M., Herrando, S., Vayreda, J., & Retana, J. (2019). Are
22	755	protected areas preserving ecosystem services and biodiversity? Insights from
23	756	Mediterranean forests and shrublands. Landscape Ecology, 34(10), 2307–2321.
24	757	https://doi.org/10.1007/s10980-019-00887-8
25	750	Lehner, B., Katiyo, L., Chivava, F., Sichingabula, H. M., Nyirenda, E., Rivers-Moore, N. A.,
26	758	
27	759	Paxton, B. R., Grill, G., Nyoni, F., Shamboko-Mbale, B., Banda, K., Thieme, M. L.,
28	760	Silembo, O. M., Musutu, A., & Filgueiras, R. (2021). Identifying priority areas for surface
29	761	water protection in data scarce regions: An integrated spatial analysis for Zambia. Aquatic
30	762	Conservation: Marine and Freshwater Ecosystems, 31(8), 1998–2016.
31	763	https://doi.org/10.1002/aqc.3606
32 33	764	Long L Döhning Coose K. Fiedler W. & Mueller T. (2015) Nemedian and sessenal range
34	764	Lenz, J., Böhning-Gaese, K., Fiedler, W., & Mueller, T. (2015). Nomadism and seasonal range
35	765	expansion in a large frugivorous bird. <i>Ecography</i> , 38(1), 54-62.
36	766	https://doi.org/10.1111/ecog.00522
37	767	Li, H., Li, Z., Li, Z., Yu, J., & Liu, B. (2015). Evaluation of ecosystem services: A case study in
38		
39	768	the middle reach of the Heihe River Basin, Northwest China. <i>Physics and Chemistry of the</i>
40	769	Earth, 89–90, 40–45. https://doi.org/10.1016/j.pce.2015.07.003
41	770	
42	771	Lindsey, P. A., Nyirenda, V. R., Barnes, J. I., Becker, M. S., McRobb, R., Tambling, C. J.,
43	772	Taylor, W. A., Watson, F. G., & t'Sas-Rolfes, M. (2014). Underperformance of African
44 45	773	protected area networks and the case for new conservation models: Insights from Zambia.
45 46	774	PLoS ONE, 9(5). https://doi.org/10.1371/journal.pone.0094109
40 47		
48	775	Liu, S., Costanza, R., Farber, S., & Troy, A. (2010). Valuing ecosystem services: Theory,
49	776	practice, and the need for a transdisciplinary synthesis. Annals of the New York Academy of
50	777	Sciences, 1185, 54–78. https://doi.org/10.1111/j.1749-6632.2009.05167.x
51	778	Lobora, A., Nahonyo, C., Munishi, L., Caro, T., Foley, C., & Beale, C. (2017). Efficacy of land
52	779	use designation in protecting habitat in the miombo woodlands: Insights from Tanzania.
53		<i>BioRxiv</i> , 117622. https://doi.org/10.1101/117622
54	780	Bio(X,MV, 117022, https://doi.org/10.1101/117022)
55 56	781	Maanan, M., Maanan, M., Karim, M., Ait Kacem, H., Ajrhough, S., Rueff, H., Snoussi, M., &
56 57		
58		32
50 59		52
60		7

1		
2		
3 4	782	Rhinane, H. (2019). Modelling the potential impacts of land use/cover change on terrestrial
5	783	carbon stocks in north-west Morocco. International Journal of Sustainable Development
6	784	and World Ecology, 26(6), 560-570. https://doi.org/10.1080/13504509.2019.1633706
7	785	Malunga, M. M., Cho, M. A., Chirwa, P. W., & Yerokun, O. A. (2021). Land use induced land
8	786	cover changes and future scenarios in extent of Miombo woodland and Dambo ecosystems
9 10	787	in the Copperbelt province of Zambia. African Journal of Ecology, 60(1), 43–57.
11	788	https://doi.org/10.1111/aje.1292
12 13	789	Mbanga, T. M., Mulenga, M. C., & Membele, G. (2021). <i>Monitoring Forest Cover Change in</i>
14 15	790	Kalomo Hills Local Forest Using Remote Sensing and GIS: 1984-2018. 1–7.
16		
17	791	
18 19	792 793	Mfune, O. (2014). Extending conservation to farmlands in Zambia: Prescribed practices and reality. <i>Journal of Sustainable Developent</i> , 7(1), 46–59, https://doi.org/10.5539/jsd.v7n1p46
20		
21	794	Millennium Ecosystem Assessment, (2005). Ecosystems and Human Well-being:
22 23	795	Synthesis. Island Press, Washington, DC.
24	796	
25	797	Milupi, I., Mubita, K., Monde, P. N., Simooya, S. M., Namukoko, J., Tembo, M., Nakombe, W.
26	798	C., & Mufana, F. (2021). Community participation and Community Based Wildlife
27	799	Resource Management in Mumbwa Game Management Area in Zambia. International
28	800	Journal of Research and Innovation in Social Science (IJRISS) /Volume, V(X).
29 30	801	https://www.researchgate.net/publication/355873391
31	802	Moombe, K. B., Siangulube, F. S., Mwaanga, B. M., Mfuni, T. I., Yanou, M. P., Gumbo, D. J.,
32	803	Mwansa, R. C., & Juunza, G. (2020). Understanding landscape dynamics A case study from
33	804	Kalomo District. Operationalizing Integrated Landscape Approaches in the Tropics,
34 35	805	<i>October</i> , 148–175.
36	806	Munang, R., Thiaw, I., Alverson, K., Mumba, M., Liu, J., & Rivington, M. (2013). Climate
37	807	change and Ecosystem-based Adaptation: A new pragmatic approach to buffering climate
38	808	change impacts. Current Opinion in Environmental Sustainability, 5(1), 67–71.
39	809	https://doi.org/10.1016/j.cosust.2012.12.001
40 41		
42	810	Mwima, H. K. (2001). A brief history of Kafue National Park, Zambia. <i>Koedoe</i> , 44(1), 57–72.
43	811	https://doi.org/10.4102/koedoe.v44i1.186
44	812	Namukonde, N., & Kachali, R. N. (2015). Perceptions and attitudes of local communities
45	813	towards kafue national park, Zambia. Parks, 21(2), 25–36.
46	814	https://doi.org/10.2305/IUCN.CH.2014.PARKS-21-2NN.en
47 48		
49	815	Nematollahi, S., Fakheran, S., Kienast, F., & Jafari, A. (2020). Application of InVEST habitat
50	816	quality module in spatially vulnerability assessment of natural habitats (case study:
51	817	Chaharmahal and Bakhtiari province, Iran). Environmental Monitoring and Assessment,
52	818	192(8). https://doi.org/10.1007/s10661-020-08460-6
53	819	Neugarten, R.A., Langhammer, P.F., Osipova, E., Bagstad, K.J., Bhagabati, N., Butchart,
54 55	820	S.H.M., Dudley, N., Elliott, V., Gerber, L.R., Gutierrez Arrellano, C., Ivanić, KZ.,
56	821	Kettunen, M., Mandle, L., Merriman, J.C., Mulligan, M., S-H Peh, K., Raudsepp-Hearne,
57	021	
58		33
59		
60		

2 3	822	C., Semmens, D.J., Stolton, S., Willcock, S., (2018). Tools for measuring, modelling, and
4	823	valuing ecosystem services, <i>IUCN</i> .
5 6	824	Ngoma, H., Lupiya, P., Kabisa, M., & Hartley, F. (2021). Correction to: Impacts of climate
7	825	change on agriculture and household welfare in Zambia: an economy-wide analysis
8	826	(Climatic Change, (2021), 167, 3-4, (55), 10.1007/s10584-021-03168-z). Climatic Change,
9	827	169(3–4), 1–20. https://doi.org/10.1007/s10584-021-03251-5
10	027	109(5 1), 1 20. https://doi.org/10.1007/510501 021 05251 5
11	828	Nunes, L. J. R., Meireles, C. I. R., Gomes, C. J. P., & Ribeiro, N. M. C. A. (2019). Forest
12	829	management and climate change mitigation: A review on carbon cycle flow models for the
13	830	sustainability of resources. Sustainability (Switzerland), 11(19).
14	831	https://doi.org/10.3390/su11195276
15		
16	832	Ochoa, V., & Urbina-Cardona, N. (2017). Tools for spatially modeling ecosystem services:
17 18	833	Publication trends, conceptual reflections and future challenges. Ecosystem Services, 26,
19	834	155–169. https://doi.org/10.1016/j.ecoser.2017.06.011
20	025	Dellation I. Despette A. Mhinde K. Zimhe N. Siemaele A. Chardenke D. Sienenluhe F.
21	835	Pelletier, J., Paquette, A., Mbindo, K., Zimba, N., Siampale, A., Chendauka, B., Siangulube, F.,
22	836	& Roberts, J. W. (2018). Carbon sink despite large deforestation in African tropical dry
23	837	forests (miombo woodlands). Environmental Research Letters, 13(9).
24	838	https://doi.org/10.1088/1748-9326/aadc9a
25	839	Phiri, D., Chanda, C., Nyirenda, V. R., & Lwali, C. A. (2022). An assessment of forest loss and
26	840	its drivers in protected areas on the Copperbelt province of Zambia: 1972–2016. <i>Geomatics</i> ,
27	840 841	Natural Hazards and Risk, 13(1), 148–166.
28		https://doi.org/10.1080/19475705.2021.2017021
29 30	842	https://doi.org/10.1080/19473703.2021.2017021
31	843	Phiri, D., Morgenroth, J., & Xu, C. (2019). Long-term land cover change in Zambia: An
32	844	assessment of driving factors. Science of the Total Environment, 697, 134206.
33	845	https://doi.org/10.1016/j.scitotenv.2019.134206
34		
35	846	Piyathilake, I. D. U. H., Udayakumara, E. P. N., Ranaweera, L. V., & Gunatilake, S. K. (2022).
36	847	Modeling predictive assessment of carbon storage using InVEST model in Uva province,
37	848	Sri Lanka. Modeling Earth Systems and Environment, 8(2), 2213–2223.
38 39	849	https://doi.org/10.1007/s40808-021-01207-3
40	950	Rai, R., Zhang, Y., Paudel, B., Acharya, B. K., & Basnet, L. (2018). Land use and land cover
41	850	
42	851	dynamics and assessing the ecosystem service values in the trans-boundary Gandaki River
43	852	Basin, Central Himalayas. Sustainability (Switzerland), 10(9), 1–22.
44	853	https://doi.org/10.3390/su10093052
45	854	Rduch, V. (2016). Population characteristics and coexistence of puku (Kobus vardonii) and
46	855	impala (Aepyceros melampus) in and around Kafue National Park, Zambia. <i>Mammalian</i>
47	856	<i>Biology</i> , 81(4), 350–360. https://doi.org/10.1016/j.mambio.2016.03.005
48 49	850	<i>Diology</i> , 01(4), 550–500. https://doi.org/10.1010/j.indinoi0.2010.05.005
49 50	857	Reader, M. O., Eppinga, M. B., de Boer, H. J., Damm, A., Petchey, O. L., & Santos, M. J.
51	858	(2022). The relationship between ecosystem services and human modification displays
52	859	decoupling across global delta systems. Communications Earth and Environment, 3(1), 1–
53	860	13. https://doi.org/10.1038/s43247-022-00431-8
54	-	
55	861	Reed, J., Chervier, C., Borah, J. R., Gumbo, D., Moombe, K. B., Mbanga, T. M., O'Connor, A.,
56	862	Siangulube, F., Yanou, M., & Sunderland, T. (2022). Co-producing theory of change to
57		24
58 59		34
60		

1 2		
3 4 5	863 864	operationalize integrated landscape approaches. <i>Sustainability Science</i> , 18(2), 839–855. https://doi.org/10.1007/s11625-022-01190-3
6 7 8 9	865 866 867	Reed, J., Deakin, L., & Sunderland, T. (2015). What are "Integrated Landscape Approaches" and how effectively have they been implemented in the tropics: A systematic map protocol. <i>Environmental Evidence</i> , <i>4</i> (1), 1–7. https://doi.org/10.1186/2047-2382-4-2
10 11 12 13 14	868 869 870 871	Reed, J., Ickowitz, A., Chervier, C., Djoudi, H., Moombe, K., Ros-Tonen, M., Yanou, M., Yuliani, L., & Sunderland, T. (2020). Integrated landscape approaches in the tropics: A brief stock-take. <i>Land Use Policy</i> , 99(April), 104822. https://doi.org/10.1016/j.landusepol.2020.104822
15 16 17 18 19 20	872 873 874 875	Reed, J., Van Vianen, J., Deakin, E. L., Barlow, J., & Sunderland, T. (2016). Integrated landscape approaches to managing social and environmental issues in the tropics: learning from the past to guide the future. <i>Global Change Biology</i> , 22(7), 2540–2554. https://doi.org/10.1111/gcb.13284
20 21 22 23 24	876 877 878	Richardson, R. B., Olabisi, L. S., Waldman, K. B., Sakana, N., & Brugnone, N. G. (2021). Modeling interventions to reduce deforestation in Zambia. <i>Agricultural Systems</i> , 194(August), 103263. https://doi.org/10.1016/j.agsy.2021.103263
25 26 27 28	879 880 881	Riggio, J., Jacobson, A. P., Hijmans, R. J., & Caro, T. (2019). How effective are the protected areas of East Africa? <i>Global Ecology and Conservation</i> , <i>17</i> , e00573. https://doi.org/10.1016/j.gecco.2019.e00573
29 30 31 32	882 883 884	Rosa, I. M. D., Rentsch, D., & Hopcraft, J. G. C. (2018). Evaluating forest protection strategies: A comparison of land-use systems to preventing forest loss in Tanzania. <i>Sustainability</i> (<i>Switzerland</i>), 10(12). https://doi.org/10.3390/su10124476
33 34 35 36 37	885 886 887 888	 Rosen, J. G., Mulenga, D., Phiri, L., Okpara, N., Brander, C., Chelwa, N., & Mbizvo, M. T. (2021). "Burnt by the scorching sun": climate-induced livelihood transformations, reproductive health, and fertility trajectories in drought-affected communities of Zambia. <i>BMC Public Health</i>, 21(1), 1–14. https://doi.org/10.1186/s12889-021-11560-8
 38 39 40 41 42 43 44 45 46 47 48 	889 890 891 892	Sialubanje, C., Massar, K., Horstkotte, L., Hamer, D. H., & Ruiter, R. A. C. (2017). Increasing utilisation of skilled facility-based maternal healthcare services in rural Zambia: The role of safe motherhood action groups. <i>Reproductive Health</i> , <i>14</i> (1), 1–10. https://doi.org/10.1186/s12978-017-0342-1
	893 894 895 896	Simpungwe, E., Dhliwayo, T., Palenberg, M., Taleon, V., Birol, E., Oparinde, A., & Diressie, M. T. (2017). Orange maize in Zambia: crop development and delivery experience. <i>African</i> <i>Journal of Food, Agriculture, Nutrition and Development</i> , 17(2), 11973-11999. https://doi.org/10.18697/ajfand.78.HarvestPlus08
49 50 51 52	897 898 899	Sintayehu, D. W. (2018). Impact of climate change on biodiversity and associated key ecosystem services in Africa: a systematic review. <i>Ecosystem Health and Sustainability</i> , 4(9), 225– 239. https://doi.org/10.1080/20964129.2018.1530054
53 54 55 56	900 901 902	Solomon, N., Pabi, O., Annang, T., Asante, I. K., & Birhane, E. (2018). The effects of land cover change on carbon stock dynamics in a dry Afromontane forest in northern Ethiopia. <i>Carbon Balance and Management</i> , <i>13</i> (1). https://doi.org/10.1186/s13021-018-0103-7
57 58 59		35

2		
3 4	903	Soto-Navarro, C., Ravilious, C., Arnell, A., De Lamo, X., Harfoot, M., Hill, S. L. L., Wearn, O.
5	904	R., Santoro, M., Bouvet, A., Mermoz, S., Le Toan, T., Xia, J., Liu, S., Yuan, W., Spawn, S.
6	905	A., Gibbs, H. K., Ferrier, S., Harwood, T., Alkemade, R., Kapos, V. (2020). Mapping
7	906	co-benefits for carbon storage and biodiversity to inform conservation policy and action.
8	907	Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1794).
9	908	https://doi.org/10.1098/rstb.2019.0128
10		
11	909	Summers, J. K., Simth L. M., Fulford, R. S., & Crespo, R. D. J. (2018). The role of ecosystem
12	910	services in community well-being. IntechOpen. https://doi.org/10.5772/intechopen.74068
13	911	Tallis, H. T., Ricketts, T., Guerry, A. D., Wood, S. A., Sharp, R., Nelson, E., Ennaanay, D.,
14	912	Wolny, S., Olwero, N., Vigerstol, K., & Pennington, D. (2014). Integrated valuation of
15 16	913	environmental services and tradeoffs (InVEST) 3.1.0 user's guide. Natural Capital Project.
16 17		
18	914	Terrado, M., Sabater, S., Chaplin-Kramer, B., Mandle, L., Ziv, G., & Acuña, V. (2016). Model
19	915	development for the assessment of terrestrial and aquatic habitat quality in conservation
20	916	planning. Science of the Total Environment, 540, 63–70.
21	917	https://doi.org/10.1016/j.scitotenv.2015.03.064
22	010	United Nations Development Programme (2011) Study of Long Management Effectiveness and
23	918	United Nations Development Programme. (2011). Strengthening Management Effectiveness and
24	919	Generating Multiple Environmental Benefits within and around the Greater Kafue National
25	920	Park and West Lunga National Park in Zambia.
26 27	921	Upla, P., Reed, J., Moombe, K. B., Kazule, B. J., Mulenga, B. P., Ros-Tonen, M., & Sunderland,
27	922	T. (2022). Assessing the Potential for Private Sector Engagement in Integrated Landscape
29	923	Approaches: Insights from Value-Chain Analyses in Southern Zambia. <i>Land</i> , 11(9).
30	924	https://doi.org/10.3390/land11091549
31	521	
32	925	USAID. (2017). Zambia Maize Market Fundamentals. The United States Agency for
33	926	International Development Famine Early Warning Systems Network.
34	007	Von den Herst D. Vermerslen C. & Kunteshule E. (2014). The hadrification of mainesseners?
35	927	Van der Horst, D., Vermeylen, S., & Kuntashula, E. (2014). The hedgification of maizescapes?
36 37	928	Scalability and multifunctionality of Jatropha curcas hedges in a mixed farming landscape
38	929	in Zambia. <i>Ecology and Society</i> , 19(2). https://doi.org/10.5751/ES-06437-190248
39	930	Vasquez, W., & Sunderland, T. (2023). Review The rights way forward: reconciling the right to
40	931	food with biodiversity conservation. 1–9. https://doi.org/10.1017/S0030605322000916
41	501	
42	932	Vezina, B., Ranaivoson, A., Razafimanahaka, J., Andriafidison, D., Andrianirina, H., Ahamadi,
43	933	K., Rabearivony, J., & Gardner, C. (2020). Understanding Livelihoods for Protected Area
44	934	Management: Insights from Northern Madagascar. Conservation and Society, 18(4), 327-
45 46	935	339. https://doi.org/10.4103/cs.cs_19_144
46 47		
48	936	Wade, A. S., Barov, B., Burfield, I. J., Gregory, R. D., Norris, K., & Butler, S. J. (2013).
49	937	Quantifying the detrimental impacts of land-use and management change on European
50	938	forest bird populations. PLoS One, 8(5), https://doi.org/10.1371/journal.pone.0064552.
51	939	Waldman, K. B., Vergopolan, N., Attari, S. Z., Sheffield, J., Estes, L. D., Caylor, K. K., &
52	940	Evans, T. P. (2019). Cognitive biases about climate variability in smallholder farming
53	941	systems in Zambia. Weather, Climate, and Society, 11(2), 369–383.
54	941 942	https://doi.org/10.1175/WCAS-D-18-0050.1
55 56	572	
50 57		
58		36
59		

1 2 3 4 5 6 7 8 9 10 11	943 944 945 946 947 948 949	 Wang, L., Mondela, C. L., & Kuuluvainen, J. (2022a). Striking a Balance between Livelihood and Forest Conservation in a Forest Farm Facility in Choma, Zambia. <i>Forests</i>, <i>13</i>(10). https://doi.org/10.3390/f13101631 Wang, N., Wang, G., Guo, W., & Liu, M. (2022b). Spatio-Temporal Changes in Habitat Quality and Linkage with Landscape Characteristics Using InVEST-Habitat Quality Model : A Case Study at Changdang Lake National. 31(6), 1–16. https://doi.org/10.15244/pjoes/150666
12 13 14 15 16	950 951 952 953	Watson, F. G. R., Becker, M. S., Milanzi, J., & Nyirenda, M. (2014). Human encroachment into protected area networks in Zambia: implications for large carnivore conservation. In <i>Regional Environmental Change</i> (Vol. 15, Issue 2). https://doi.org/10.1007/s10113-014- 0629-5
17 18 19 20	954 955 956	Williams, M., Ryan, C. M., Rees, R. M., Sambane, E., Fernando, J., & Grace, J. (2008). Carbon sequestration and biodiversity of re-growing miombo woodlands in Mozambique. <i>Forest</i> <i>Ecology and Management</i> , 254(2), 145–155. https://doi.org/10.1016/j.foreco.2007.07.033
$\begin{array}{c} 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 37\\ 38\\ 39\\ 40\\ 41\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 950\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 57\\ 56\\ 57\\ 57\\ 57\\ 57\\ 57\\ 57\\ 57\\ 57\\ 57\\ 57$	957 958 959	Yanou, M. P., Ros-Tonen, M., Reed, J., & Sunderland, T. (2023). Local knowledge and practices among Tonga people in Zambia and Zimbabwe: A review. <i>Environmental Science and</i> <i>Policy</i> , <i>142</i> , 68–78. https://doi.org/10.1016/j.envsci.2023.02.002
57 58 59 60		37